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The small-scale structure of grid turbulence is studied primarily using data obtained
with a transverse vorticity (ω3) probe for values of the Taylor-microscale Reynolds
number Rλ in the range 27–100. The measured spectra of the transverse vorticity
component agree within ±10% with those calculated using the isotropic relation over
nearly all wavenumbers. Scaling-range exponents of transverse velocity increments are
appreciably smaller than exponents of longitudinal velocity increments. Only a small
fraction of this difference can be attributed to the difference in intermittency between
the locally averaged energy dissipation rate and enstrophy fluctuations. The anisotropy
of turbulence structures in the scaling range, which reflects the small values of Rλ,
is more likely to account for most of the difference. All four fourth-order rotational
invariants Iα (α = 1 to 4) proposed by Siggia (1981) were evaluated. For any particular
value of α, the magnitude of the ratio Iα/I1 is approximately constant, independently
of Rλ. The implication is that the invariants are interdependent, at least in isotropic
and quasi-Gaussian turbulence, so that only one power-law exponent may be sufficient
to describe the Rλ dependence of all fourth-order velocity derivative moments in this
type of flow. This contrasts with previous suggestions that at least two power-law
exponents are needed, one for the rate of strain and the other for vorticity.

1. Introduction
Significant evidence has emerged over the last few years on the relative behaviour

of the scaling exponents associated with moments of order p of the longitudinal
velocity increments (in which the velocity is in the same direction as the separation)
and the transverse increments (in which the velocity is transverse to the separation)
when the separation r lies within the inertial range (IR), i.e. η � r � L, where
η ≡ (ν3/〈ε〉)1/4 is the Kolmogorov length scale, ν is the kinematic viscosity of the
fluid, 〈ε〉 is the mean energy dissipation rate and angular brackets denote time
averaging; L ≡ U1

∫ τ0

0
ρu1u1

(τ) dτ is the longitudinal integral length scale, ρu1u1
is the

longitudinal velocity autocorrelation coefficient, τ is the time delay and τ0 is the time
at which the first zero crossing occurs. With some exceptions (Kahalerras, Malecot
& Gagne 1996; Camussi et al. 1996; Noullez et al. 1997), the available data from
experiments (e.g. Herweijer & van de Water 1995; Camussi & Benzi 1997; Pearson
& Antonia 1997; Dhruva, Tsuji & Sreenivasan 1997) and numerical calculations (e.g.
Chen et al. 1997b; Boratav & Pelz 1997; Grossmann, Lohse & Reeh 1997) indicate
that ζu2

(p) < ζu1
(p), where ζu1

(p) and ζu2
(p) are the scaling exponents for the pth-order

longitudinal and transverse velocity increments in the IR. The magnitude of the
inequality, which increases with p, almost certainly depends on a number of factors,
e.g. the Reynolds number, the presence of the mean shear or the level of structural
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organization of the flow, some of these being most likely interrelated. The Reynolds
number may be the most dominant factor as there is evidence (e.g. Dhruva et al.
1997) that the inequality nearly disappears for high Reynolds number atmospheric
surface layer.

Various explanations have been proposed for the inequality, perhaps the most
popular one (e.g. Chen et al. 1997a; Boratav & Pelz 1997) tending to associate the
longitudinal velocity increment with either the strain rate or the energy dissipation rate
ε and the transverse velocity increment with the mean-square vorticity or enstrophy
respectively. Chen et al. (1997a) proposed a modification to the refined similarity
hypothesis (RSH) (Kolmogorov 1962, hereafter referred to as K62), which they called
the refined similarity hypothesis for transverse velocity increments (RSHT). They
found that RSH and RSHT were well supported by their DNS data, indicating the
possible existence of two independent scaling groups, one related to the rate of strain
and the other to the vorticity. If indeed independent scaling groups are required, then,
as Dhruva et al. (1997) pointed out, a richer small-scale phenomenology than has
hitherto been used will need to be introduced. On the other hand, L’vov & Procaccia
(1996) and Nelkin (1999) have argued that the asymptotic scaling exponents of locally
averaged dissipation rates and enstrophy should be the same when Rλ → ∞. Using
models based on cylindrical vortices, He et al. (1998) also showed that both the
differences in exponents for locally averaged dissipation rate and enstrophy and the
differences between longitudinal and transverse velocity increments will disappear in
the limit of infinite Reynolds numbers, implying that the Reynolds number is the
main contributor to the latter differences.

It was pointed out by Sreenivasan & Antonia (1997) that if RSH is valid, the
intermittency in the IR is inseparable from that in the dissipative range (DR). In
this context, it is not unreasonable to expect different quantities in the DR to exhibit
different behaviours, for example different Reynolds number dependences. The idea
that both the instantaneous energy dissipation rate ε and enstrophy ω2 may exert
different influences on moments of different velocity derivatives was implicit in the
proposal put forward by Siggia (1981). Specifically, he showed that, for homogeneous
isotropic turbulence, the fourth-order velocity derivative moments can be expressed
in terms of four scalar quantities (rotational invariants) given by

I1 = 〈(e2)2〉,
I2 = 〈ω2e2〉,
I3 = 〈ωieijejkωk〉,
I4 = 〈(ω2)2〉,

 (1.1)

where eij [≡ 1
2
(ui,j + uj,i)] is the rate of strain, e2 ≡ ∑ e2

ij , ωi (≡ εijkuk,j , where εijk is
the alternating tensor and uk,j ≡ ∂uk/∂xj) is the vorticity, ω2 (≡ ω2

1 + ω2
2 + ω2

3) is the
enstrophy. Siggia (1981) calculated Iα from data obtained in a 643 direct simulation of
stationary, homogeneous and isotropic turbulence (Rλ = 60 to 90). Not surprisingly,
the numerical values of Iα were significantly larger than the corresponding Gaussian
values of 7

5
, 2, 2

3
and 20

34
for α = 1 to 4 respectively after normalization by 〈e2〉2.

Kerr (1985) carried out simulations (up to 1283 grid points with periodic boundary
conditions in all three directions) of isotropic turbulence and calculated Iα over a

range of the Taylor microscale Reynolds number Rλ (≡ λu′1/ν, where λ = u′1/〈u2
1,1〉1/2

is the Taylor microscale and the prime denotes root mean square (r.m.s.) value). Over
the range 28 6 Rλ 6 89, I1, I2 and I4 increased with Rλ in power-law fashion with
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exponents, estimated with an uncertainty of ±0.03, of 0.18, 0.29 and 0.37 respectively.
These values seem to suggest that at least two distinct exponents are needed, one
for the rate of strain and the other for vorticity, in support of the implication by
Siggia (1981). However, Kerr (1985) also noted that one exponent may suffice when
Rλ is sufficiently large. Both Siggia (1981) and Kerr (1985) emphasized that more will
be learned about small-scale intermittency by determining Iα in a high-quality wind
tunnel than by measuring only 〈u4

1,1〉 at ever higher Rλ.
The measurement of Iα is not straightforward since nine velocity derivatives need

to be determined simultaneously. To our knowledge, only Tsinober, Kit & Dracos
(1992) reported estimates of Iα (Fα in their paper) in grid turbulence (Rλ ' 70) and
at two locations in a boundary layer using a 12-hot-wire vorticity probe. They found
that their values of Iα for the grid turbulence agreed, within 20%, with the DNS
values of Siggia (1981) and Kerr (1985). They also noted that their estimates of Iα
were closer to the Gaussian values, attributing this to the presence of random noise
in their experiments. It is difficult to judge the accuracy of these estimates, especially
since the effect of the spatial resolution of the probe does not appear to have been
considered. Grid turbulence results were presented at only one flow speed; strictly,
this should have resulted in an approximately constant value of Rλ at a sufficient
distance from the grid (say x1/M & 30, where M is the grid mesh size). The tabulated
values of Rλ (table 2 of their paper) indicate appreciable fluctuations with x1/M; also,
at some x1 locations, the expected isotropic equality 〈ω2

1〉 = 〈ω2
2〉 = 〈ω2

3〉 is violated,
possibly due, at least in part, to an imperfect spatial resolution of their hot-wire
probe.

It would clearly be of interest to measure Iα and examine its Rλ dependence in flows
where local isotropy is approximately satisfied. However, the experimental estimation
of Iα via (1.1) is difficult. The difficulty is compounded when the spatial resolution of
the probe is inadequate; there is, as yet, no suitable method for correcting velocity
derivative moments of order higher than 2 for the effect of spatial resolution. The
assumption of isotropy considerably simplifies the determination of Iα. Siggia (1981)
noted that the four invariants in (1.1) can be related to fourth-order velocity derivative
correlations that are readily measurable. For example, an X-probe will yield, with
the help of Taylor’s hypothesis, three independent components of the fourth-order
velocity gradient tensor, namely

F1 = 〈u4
1,1〉,

F2 = 〈u2
1,1u

2
2,1〉,

F3 = 〈u4
2,1〉.

 (1.2)

These three parameters are related to Iα as follows (Siggia 1981):

F1 = 4I1/105,

F2 = I1/105 + I2/70− I3/105,

F3 = 3I1/140 + 11I2/140− 3I3/35 + I4/80.

 (1.3)

Using isotropy,

I4 = 5〈ω4
1〉 = 5〈ω4

2〉 = 5〈ω4
3〉. (1.4)

I4 can be directly obtained from a one-component vorticity measurement. Once I4 is
known, (1.3) can be solved for I1, I2 and I3.

In the present study, the Iα are estimated via (1.2)–(1.4) from data obtained primarily
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Figure 1. Sketches of (a) turbulence-generating grid and (b) lateral vorticity probe.

with a one-component vorticity (ω3) probe in grid turbulence. These estimates are
compared with those inferred from (1.1). This comparison is possible because of data
previously obtained in the same flow using a four-X-wire three-dimensional vorticity
probe, though at only one value of Rλ (experimental details can be found in Antonia,
Zhou & Zhu 1998). The present measurements are obtained over a sufficient Rλ range
to permit the Rλ dependences of various fourth-order velocity derivative moments
to be compared with those obtained from numerical simulations (e.g. Siggia 1981;
Kerr 1985) and experiments (e.g. Tsinober et al. 1992). It also allows the relative Rλ
dependences of ζu1

(p) and ζu2
(p) to be examined.

Grid turbulence was chosen primarily because it provides a reasonably close ap-
proximation to isotropic turbulence, thus allowing a comparison with results from
available periodic-box turbulence simulations. A significant advantage of this flow is
that it allows the accuracy of the measurement technique to be checked since the mea-
sured mean turbulent energy dissipation rate can be compared with that estimated,
with relatively good accuracy, from the streamwise decay rate of the mean turbulent
energy.

2. Experimental details
Measurements of ω3 were made on the centreline of the working section (350 mm×

350 mm, 2.4 m long) of a non-return blower-type low-turbulence wind tunnel. The
measurement location was at x1/M = 70 (where M is the mesh size of the grid)
downstream of a biplane grid placed at the entrance to the working section. A square
mesh (M = 24.76 mm with 4.76 mm × 4.76 mm square rods) grid with a solidity of
0.35 was used. A definition sketch of the grid and the coordinate system is shown
in figure 1(a). The mean velocity U1 was varied between 3 m s−1 and 21.2 m s−1. The
corresponding variation in the Taylor microscale Reynolds number Rλ was 27 to 100
(see table 1).

The transverse vorticity ω3 was obtained using a four-hot-wire vorticity probe
sketched in figure 1(b). This probe consisted of a pair of parallel wires c and d
straddling wires a and b of an X-probe. The quantity ω3 was approximated by

ω3 =
∆u2

∆x1

− ∆u1

∆x2

= −U−1
1

∆u2

∆t
− ∆u1

∆x2

, (2.1)
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U1 λ η fc fK fs 〈ε〉 L u′1 u′2
(m s −1) Rλ (mm) (mm) (kHz) (kHz) (kHz) ∆x∗2 ∆x∗3 (m2 s−3) (mm) (cm s −1) (cm s −1)

3 27 9.25 0.90 0.63 0.53 1.89 1.5 1.5 0.006 22.1 4.6 4.1
4.8 50 8.14 0.58 1.6 1.32 3.2 1.6 2.1 0.032 55.2 9.6 7.1
7.6 62 6.5 0.42 3.15 2.94 6.3 2.2 2.9 0.12 45.7 15 11.4

11.3 75 5.36 0.30 6.3 5.85 12.6 2.0 2.7 0.4 42.1 22 17.4
14.1 83 4.64 0.26 8.0 8.52 16.0 2.3 3.2 0.83 42.5 27.5 21.8
16.9 89 4.08 0.24 12.5 11.4 25.0 2.5 3.4 1.37 38.1 32.5 25
21.2 100 3.81 0.20 16.0 16.8 32.0 3.0 4.1 2.56 42.4 40 31.4

Rλ ≡ u′1λ/ν is the Taylor microscale Reynolds number.

λ ≡ u′1/〈u2
1,1〉1/2 is the longitudinal Taylor microscale.

η ≡ ν3/4/〈ε〉1/4 is the Kolmogorov length scale.
fc and fs are the cut-off frequency and sampling frequency respectively.
fK ≡ U1/(2πη) is the Kolmogorov frequency.
L ≡ U1

∫ τ0
0
ρu1u1

(τ) dτ is the longitudinal integral length scale.

Table 1. Summary of experimental conditions for transverse vorticity measurement at x1/M = 70.

where ∆u1 is the difference between the longitudinal velocity fluctuations from two
parallel hot wires which are separated in the x2-direction; ∆u2 is the difference between
values of u2 at the same point in space but separated in time by one sampling time
interval ∆t (≈ f−1

s ; fs is the sampling frequency). Because the turbulence intensity is
small (u′i/U1 6 2%, i = 1, 2, 3), the use of Taylor’s hypothesis, i.e. ∆/∆x1 = −U−1

1 ∆/∆t
in (2.1), should be satisfactory. A forward differencing scheme was used to convert
temporal to spatial derivatives, the magnitude of ∆x1 being approximately equal to
that of ∆x2.

Three vorticity probes with different wire separations (see table 1) were used. The
separation ∆x2 was adjusted before the wires were etched so that ∆x∗2 (the superscript
∗ denotes normalization by the Kolmogorov length scale η and/or the Kolmogorov
velocity scale UK ≡ (ν〈ε〉)1/4) remained in the range of 2 to 4 (e.g. Antonia, Zhu
& Kim 1993; Zhu & Antonia 1995). This strategy was adopted to try to minimize
any noise contamination due to too small a separation and any spectral attenuation
due to too large a separation. These two effects can adversely influence the quality
of the measured fourth-order velocity derivative correlations. The decay of the mean
turbulent energy 〈q2〉 (≡ 〈u2

1〉+ 〈u2
2〉+ 〈u2

3〉) in the longitudinal direction was measured
with a probe comprising two X-wires. The X-wires were arranged orthogonally, one
in the (x1, x2)- and the other in the (x1, x3)-plane; in this way, all three components of
the velocity fluctuation vector were determined simultaneously. The wire separation
in each X-wire was about 0.8 mm, corresponding to 3.7η–1.6η (for x1/M = 20–80).
This measurement was made for U1 = 7 m s−1 at seven locations (x1/M = 20 to 80)
along the tunnel. The included angles for the X-wire in the one-component vorticity
probe and the two X-wire probe were about 100◦, large enough to minimize the
effect of large velocity cone angles (e.g. Browne, Antonia & Chua 1989). All probes
comprised 2.5 µm diameter Wollaston Pt–10% Rh wires, each etched to an active
length of about 0.5 mm. The length to diameter ratio of the wire was about 200.

Velocity components measured with X-wires can be significantly in error when
velocity gradients are large (e.g. Vukoslavcevic & Wallace 1981; Kawall, Shokr &
Keffer 1983; Hirota, Fujita & Yokosawa 1988; Park & Wallace 1993; Zhu & Antonia
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1995). The mean velocity gradient is zero in the present flow. We estimated that the
errors in u′1, u′2 and u′3 arising from the instantaneous velocity gradient fluctuations
could be no greater than 3%. The effect of the cross-stream velocity on the X-wire
was neglected because of the low turbulence intensity (< 2% for all Rλ).

Experimental uncertainties were estimated for all measured quantities. In the case
of U1 and ui (i = 1, 2), estimates were inferred from errors in the hot-wire calibration
data as well as from the scatter (20 to 1 odds) observed in repeating the experiment
a number of times. The uncertainty in U1 was about ±2%. The uncertainties in u′1
and u′2 were about ±5%. Uncertainties in the separations ∆x1 and ∆x2 were ±2%
and ±5% respectively. Using the previous estimates, uncertainties for other quantities
were estimated by the method of propagation of errors (e.g. Moffat 1988).

The hot wires were operated with in-house constant-temperature circuits at an
overheat ratio of 1.5. Output signals from the anemometers were passed through
buck-and-gain circuits and low-pass filtered at a cut-off frequency fc (see table 1).
fc was chosen after examining the spectrum of ∂u1/∂t and identifying the onset of
electronic noise (the procedure was similar to that outlined in Antonia, Satyaprakash
& Hussain 1982). The values of fc were generally close to U1/2πη, which is commonly
identified as the Kolmogorov frequency fK . The filtered signals were then sampled
at a frequency of fs ' 2fc into a PC (IBM compatible Pentium 70) using a 12 bit
A/D converter. The number of samples for each channel was 2.1 × 106 to ensure
convergence of the highest-order (p = 8) moments of the velocity increments. The
convergence criteria proposed by Anselmet et al. (1984) and Camussi & Guj (1996)
were satisfied.

3. Anisotropy of velocity and vorticity fluctuations
As noted earlier, grid turbulence was chosen partly because the performance of the

vorticity probe can be checked and mainly because the flow provides a reasonable
approximation to homogeneous and isotropic turbulence. A few local isotropy checks
were made by Antonia et al. (1998) in the same grid flow at Rλ = 45. We consider
here the possible influence of Rλ on local isotropy.

A measure of anisotropy of velocity and vorticity fluctuations is provided by
the ratio of the spectra calculated using isotropy and the measured spectra. The
measured spectra were first corrected for the effect of wire separation and wire
length. The correction procedure has been outlined in detail in Zhu & Antonia
(1995) and Antonia, Zhu & Shafi (1996). For isotropic turbulence, because of the
solenoidality of ui in an incompressible flow (e.g. Monin & Yaglom 1975; Antonia &
Kim 1994), the spectrum φu2

(k1) or φu3
(k1) can be written in terms of φu1

(k1):

φu2
(k1) = φu3

(k1) =
1

2

(
1− k1

∂

∂k1

)
φu1

(k1). (3.1)

The spectral density φ∗α is defined such that
∫ ∞

0
φ∗α(k∗1) dk∗1 = 〈α∗2〉 (α = u1, u2, u3 and

ω3). Measured distributions of φ∗u1
were used as input when (3.1) was implemented.

When isotropy is satisfied, the ratio φ∗cu2
/φ∗mu2

(the superscript c denotes the calculated
spectrum using (3.1) and the superscript m denotes the measured and corrected
spectrum) should be 1 (e.g. Kim & Antonia 1993; Saddoughi & Veeravalli 1994).
Figure 2 shows this ratio for several values of Rλ (to avoid crowding, only results
for Rλ = 27, 62, 83 and 100 are shown; this also applies to figure 3). The ratio is
as large as 1.2 for k∗1 > 0.1. The rise at lower wavenumbers reflects the increasing
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Figure 2. Ratios of calculated and measured spectra of u2 for different Reynolds numbers. The
calculation, (3.1), is based on isotropy. - - -, Rλ = 27; — - —, 62; – –, 83; — - - —, 100. The solid
line indicates the isotropic value of 1.

anisotropy as the scale increases. Indeed, the present values of 〈u2
1〉 and 〈u2

2〉 show
large departures from isotropy, the ratio 〈u2

1〉/〈u2
2〉 being approximately equal to 1.7

at all values of Rλ. The ratio falls below 1 for k∗1 > 0.8 due mainly to the noise
contamination of the spectra.

Assuming isotropy, φω2
(k1) or φω3

(k1) can be written as (e.g. Van Atta 1991; Kim
& Antonia 1993)

φω2
(k1) = φω3

(k1) = 5
2
φu1,1

(k1)− k1

2

∂φu1,1
(k1)

∂k1

+ 2

∫ ∞
k1

φu1,1
(k)

k
dk. (3.2)

Unlike the ratio φ∗cu2
/φ∗mu2

shown in figure 2, the ratio φ∗cω3
/φ∗mω3

(figure 3) is close
to 1 (within ±10%) for k∗1 6 0.8, independently of Rλ. The decrease of the ratio
for k∗1 > 0.8 is due mainly to noise contamination. This behaviour is consistent with
Antonia & Kim’s (1994) conclusion that isotropy is satisfied, almost independently
of Rλ, provided k∗1 is sufficiently large and the Kolmogorov-normalized mean shear is
suitably small (here the mean shear is zero).

The anisotropy can also be assessed by examining the departures of the measured
second-order moments from the isotropic relations

〈ω2
1〉 = 〈ω2

2〉 = 〈ω2
3〉 = 5〈u2

1,1〉,
〈u2

1,2〉 = 〈u2
2,1〉 = 〈u2

1,3〉 = 〈u2
3,1〉 = 〈u2

2,3〉 = 〈u2
3,2〉 = 2〈u2

1,1〉,
−〈u1,2u2,1〉 = −〈u1,3u3,1〉 = −〈u2,3u3,2〉 = 1

2
〈u2

1,1〉.

 (3.3)

Figure 4 shows the corrected second-order moments of ω3 and its components,
normalized by 〈u2

1,1〉 against Rλ. For 〈u2
1,2〉 and −〈u1,2u2,1〉, the departure is within

±5%. The departure (–10%) is bigger for 〈ω2
3〉 mainly due to the departure (–15%)

of 〈u2
2,1〉 from isotropy. All of these departures seem to be independent of Rλ.
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Figure 3. Ratios of calculated and measured spectra of ω3 for different Reynolds numbers. The
calculation, (3.2), is based on isotropy. - - -, Rλ = 27; — - —, 62; – –, 83; — - - —, 100. The solid
line indicates the isotropic value of 1.
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In grid turbulence, the mean turbulent energy dissipation rate 〈ε〉 can be determined
with relatively good accuracy from the rate of decay of the mean turbulent energy in
a region where homogeneity and isotropy are approximately satisfied (e.g. Mohamed
& LaRue 1990). Assuming homogeneity and isotropy, the transport equation for the
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Figure 5. Comparison of the mean energy dissipation rate 〈ε〉 obtained from the measured decay
rate of the mean turbulent energy with its isotropic value for Rλ = 60. —, Obtained from (3.4); O,
〈ε〉iso . Error bars indicate experimental uncertainties.

mean turbulent energy 〈q2〉 ≡ 〈uiui〉 simplifies to

−U1

d

dx1

( 1
2
〈q2〉) = 〈ε〉. (3.4)

The comparison between 〈ε〉, obtained from (3.4), and the isotropic value 〈ε〉iso =
15ν〈u2

1,1〉 is a direct check of local isotropy. In figure 5, values of 〈ε〉 are compared
with 〈ε〉iso for Rλ = 60. The agreement, always better than ±15%, is comparable to
that indicated in figures 2 and 3.

The streamwise rate of change of ω′3 can also be checked against the relation
(Batchelor & Townsend 1947)

U1

d(1/ω′3)
dx1

=
7

6
√

5

(
S +

2G

Rλ

)
, (3.5)

where S ≡ 〈u3
1,1〉/〈u2

1,1〉3/2 is the skewness of u1,1 and G ≡ 〈u2
1〉 〈u2

1,11〉/〈u2
1,1〉2 (note

u1,11 ≡ ∂2u1/∂x
2
1; 〈u2

1,11〉 is estimated using 〈u2
1,11〉 =

∫ ∞
0
k4

1φu1
(k1) dk1) can be interpreted

as an enstrophy destruction coefficient. The skewness of u1,1 is about −0.4 in the range
20 6 x1/M 6 80. Figure 6 indicates that the left and right sides of (3.5) agree within
±15%.

4. Rλ dependence of second- and third-order moments of δu1

Starting with the Kármán–Howarth (1938) equation, Kolmogorov (1941, hereafter
referred to as K41) derived an equation relating 〈(δu1)

2〉 and 〈(δu1)
3〉 for homogeneous

isotropic turbulence, namely

−〈(δu1)
3〉+ 6ν

∂

∂r
〈(δu1)

2〉 = 4
5
〈ε〉r, (4.1)
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Figure 6. Comparison of terms on the left-hand (——) and right-hand (�) sides of (3.5). Error
bars indicate experimental uncertainties.

where δu1 ≡ u1(x1 + r)− u1(x1) is the longitudinal velocity increment. In the IR, the
second term of (4.1) should be negligible and (4.1) reduces to the so-called four-fifths
law:

−〈(δu1)
3〉 = 4

5
〈ε〉r. (4.2)

The region where 〈(δu1)
3〉 varies linearly with r is often identified with the IR.

In the DR,

〈(δu1)
2〉 =

1

15ν
〈ε〉r2. (4.3)

The present distributions of −r∗−1〈(δu∗1)3〉 are shown in figure 7 together with the
higher-Rλ data of Mydlarski & Warhaft (1996). The peak value of this quantity,
here denoted by C3, increases systematically with Rλ asymptotically approaching ‘ 4

5
’.

This approach suggests that it is unlikely that the scaling range satisfies isotropy
before Rλ ' 1000; alternatively, it could be argued that a proper IR is unlikely to be
established before this value is reached. A larger limiting value of Rλ would apply when
a mean shear is present. In a recent paper by Danaila et al. (1999) (see also Lindborg
1999), a more general form of the Kolmogorov equation was written for decaying grid
turbulence. A source term, reflecting the non-stationarity of the second-order velocity
increment was included. This term closes the Kolmogorov equation quite well, despite
the small value of Rλ, reflecting the non-negligible influence from the non-stationarity
of the second-order velocity increments. Arguably, this additional term may also be
interpreted as representing the non-homogeneity which arises from the streamwise
decay of the energy originally injected in the flow at a scale (' M) corresponding to
that of the grid, i.e. M. One may also speculate that the non-negligible contribution
of the source term reflects a lack of homogeneity and therefore a lack of isotropy in
the scaling range. As Rλ increases, the influence from the source term on the scaling
range decreases and the isotropy over this range improves, as reflected by the trend
in figure 7.
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×, 100; - - -, (4.3).

The second-order structure functions are shown in figure 8; 〈(δu∗1)2〉 is multiplied

by r∗−2 to allow the DR scales to be compared with local isotropy. At small r∗,
〈(δu∗1)2〉r∗−2 satisfies (4.3), independently of Rλ. This is consistent with the expectation
that DR scales should approach isotropy more rapidly than IR scales. In the IR,
the product r∗−2/3〈(δu∗1)2〉, here denoted by C2, is expected to become constant when
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�, 75; O, 83; 4, 89; ×, 100. Mydlarski & Warhaft (1996): N, 99; �, 134; �, 319; ∗, 448; +, 671.
Batchelor (equation (4.5)): —.

Rλ is sufficiently large. The data examined by Yaglom (1981) suggested that the
magnitude of this constant is about 2, albeit with a fair degree of scatter. As in
the case of r∗−1〈(δu∗1)3〉 (figure 7), the present distributions of r∗−2/3〈(δu∗1)2〉 (figure

9) do not exhibit a clear plateau. The peak magnitude of r∗−2/3〈(δu∗1)2〉 increases
systematically with Rλ. C2 ' 1.64 at Rλ = 100; we estimate that C2 ' 1.65 (Rλ = 99)
for Mydlarski & Warhaft. No information on 〈(δui)2〉 was presented by the previous
authors; their u1 spectra were converted to 〈(δu1)

2〉 by applying the relation (e.g.
Tatarskii 1971)

〈(δui)2〉 = 2

∫ ∞
0

[1− cos (k1r)]φui(k1) dk1, (4.4)

where the subscript i equals 1, 2 and 3. The Mydlarski & Warhaft data indicate that
r∗−2/3〈(δu∗1)2〉 become flatter over the IR as Rλ increases. The magnitude of C2 increases
but the scatter, notwithstanding the relatively small uncertainty in estimating 〈ε〉 in
this flow, is sufficiently large to prevent any firm conclusion about the asymptotic
value of C2. Note that the solid line represents the ‘asymptotic’ distribution suggested
by Batchelor (1951) for very high Rλ,

〈(δu∗1)2〉 =
r∗2

15[1 + (15C2)−3/2r∗2]2/3
, (4.5)

with C2 = 2. Clearly, even for the high Rλ data of Mydlarski & Warhaft (Rλ = 671),
there is a large departure from the Batchelor distribution in the IR. Equation (4.5) was
used in slightly different forms by a number of other investigators (e.g. Stolovitzky,
Sreenivasan & Juneja 1993; Lohse & Müller-Groeling 1995) to account for the
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crossover from the DR to IR. Stolovitzky et al. (1993) included an intermittency
correction to (4.5), which can be written more generally as

〈(δβ∗)2〉 =
aβr

∗2

(1 + bβr∗2)
cβ , (4.6)

where β ≡ u1, u2, u3 and aβ , bβ , cβ may depend on Rλ; in particular cβ is related
to the power-law exponent ζβ(2) via cβ = [2 − ζβ(2)]/2. The resulting expression for
arbitrary-order structure functions, valid for dissipative as well as inertial range scales,
was satisfactorily supported by their boundary layer data.

Two main comments need to be made with respect to figure 9.
(a) The information cannot be reconciled with the conclusion by Sreenivasan

(1995) that the (spectral) Kolmogorov constant is ‘more or less universal, essentially
independent of the flow as well as the Reynolds number (for Rλ > 50 or so)’. The
figure points to C2 becoming constant only beyond a value of Rλ of roughly 1000.
Mydlarski & Warhaft (1996) observed that both the spectral power-law exponent and
the corresponding proportionality constant (C1∗ in their paper) vary with Rλ. Their
data suggest that the − 5

3
spectral power-law exponent and the constant of 0.5 are

not obtained before Rλ & 104. The trial and error method adopted by Mydlarski &
Warhaft for optimizing the scaling range could not be meaningfully implemented in
our case, due to the small Rλ range of the present experiment.

(b) The Rλ dependence in figure 9 is however consistent with the Rλ dependence
in figure 7. It seems that the anisotropy in the scaling range which affects C3 also
affects C2.

5. Rλ dependence of scaling exponents
In the present study, transverse increments are identified with δu2 = u2(x1 + r) −

u2(x1). They can also be formed from differences in u1 fluctuations separated in
a direction transverse to the mean flow (e.g. Herweijer & van de Water 1995;
Kahalleras et al. 1996; Noullez et al. 1997; Chen, Sreenivasan & Nelkin 1997a). This
is not done here. The scaling exponents ζu1

(p) and ζu2
(p), namely 〈(δu1)

p〉 ∼ rζu1 (p) and
〈(δu2)

p ∼ rζu2 (p) in the IR, were estimated using essentially the extended self-similarity
(ESS) method proposed by Benzi et al. (1993) by plotting 〈|δu1|p〉 and 〈|δu2|p〉 against
〈|δu1|3〉. Unlike the ESS method, the scaling range was restricted to a range of r
for which r−1〈|δu1|3〉 is nearly constant (figure 10). The plateau in r−1〈|δu1|3〉 is
more extended than that in r−1〈(δu1)

3〉. The claim by Benzi et al. (1993) that the
scaling extends into the DR becomes tenuous as the magnitude of p increases. This is
illustrated in figure 11(a) for 〈|δu1|p〉. It is more emphatic for 〈|δu2|p〉 (figure 11b). The
curvature exhibited by figure 11(b) is not an artefact of the record duration, which
was sufficiently long for the integrands |δui|p P|δui| (where P|δui| is the probability
density function of |δui| with i = 1 and 2) to close for p = 8. It represents a genuine
departure from the relatively linear behaviour exhibited by the third-order moment of
δu1. The scaling exponents ζu1

(p) and ζu2
(p) were estimated from least-squares linear

regressions over the scaling range indicated in figure 10. The resulting values are
shown in figure 12 for Rλ = 75. ζu2

(p) is appreciably smaller than ζu1
(p) for all values

of p. The difference between these two exponents increases with p. Also shown in
figure 12 are scaling exponents obtained from K41, the lognormal (LN) model (K62)
with µ = 0.2 and the She–Leveque (SL) model (She & Leveque 1994). The present
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Figure 10. Kolmogorov-normalized third-order moment of δu1, |δu1| and |δu2|, each multiplied by

r∗−1 for the case of Rλ = 75. O, −〈(δu∗1)3〉r∗−1; �, 〈|δu∗13|〉r∗−1; 4, 〈|δu∗23|〉r∗−1; - - -, (4.2). Arrowed
solid line indicates extent of the scaling range.

values of ζu1
(p) depart from K41 much more than from LN and SL. The latter two

represent the present values quite satisfactorily for p 6 6. The departure from K41 is
greater for ζu2

(p) than for ζu1
(p).

The scaling exponents for transverse velocity increments can also be obtained by
plotting 〈|δu2|p〉 against 〈|δu2|3〉 (e.g. Camussi & Guj 1996; Camussi et al. 1996;
Cerutti & Meneveau 1998) over a range where 〈|δu2|3〉 varies linearly with r as shown
in figure 10. The plateau in r−1〈|δu2|3〉 is even smaller than that in r−1〈|δu1|3〉. The
scaling of 〈|δu2|p〉 extends to the dissipative range when it is plotted against 〈|δu2|3〉
and the curvature exhibited in figure 11(b) disappears. The resulting values of ζ⊥(p)
are also shown in figure 12. Note that ζ⊥(p) is used here to differentiate it from ζu2

(p).
Clearly, ζ⊥(2) > ζu1

(2) and ζ⊥(p) < ζu1
(p) for p > 4, consistent with the previous

experimental results of Camussi & Guj (1996) and Camussi et al. (1996). The present
(ESS) values of ζu1

(p) and ζ⊥(p) are essentially independent of Rλ (results not shown
here) within the experimental uncertainty. This result seems consistent with the DNS
data of Grossmann et al. (1997). However, in the context of ESS, the use of 〈|δu2|3〉,
as reference for 〈|δu2|p〉, seems less justified than that of 〈|δu1|3〉, since 〈(δu2)

3〉 should
be zero in isotropic turbulence. For this reason, we have preferred to use 〈|δu1|3〉 for
estimating ζu2

(p) in the present study.

In order to account for the possibly different influences of ε and ω2 on the scaling
of the longitudinal and transverse velocity increments, Chen et al. (1997a) proposed
a modified model which they called the refined similarity hypothesis for transverse
velocity increments (RSHT). While RSH does not distinguish between δu1 and δu2

(or δu3), RSHT retains RSH only for δu1:

δu1 ∼ (rεr)
1/3 (5.1)
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and proposes that δu2 is given by

δu2 ∼ (rνω2
r )

1/3
, (5.2)

where εr and ω2
r are the locally averaged values of ε and ω2 respectively. Since 〈(δu1)

p〉
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Figure 13. Comparison of energy dissipation rate spectra obtained with the present one-component
vorticity probe (equation (5.5)) and the three-component vorticity probe described in Antonia et al.
(1998). Present: — - —, φε (Rλ = 75). Three-component vorticity probe: - - -, φεf .

and 〈(δu2)
p〉 scale as rζ

L(p) and rζ
T (p) over the IR, it is assumed that 〈εpr 〉 and 〈(ω2

r )
p〉

scale as rτ
d(p) and rτ

υ(p) respectively. After equating the corresponding exponents of r,

ζL(p) = p/3 + τd(p/3),

ζT (p) = p/3 + τυ(p/3).

}
(5.3)

The superscripts L and T have been introduced because ζL(p) and ζT (p) need not, in
general, be the same as ζu1

(p) and ζu2
(p). The exponents τd(p/3) and τv(p/3) can be

inferred from the rate of change of 〈(εr)p/3〉 and 〈(ω2
r )
p/3〉 with respect to r over the

same scaling range for which ζu1
(p) and ζu2

(p) were obtained. RSHT can qualitatively
account for the present difference between ζu1

(p) and ζu2
(p) provided τd(p/3) and

τv(p/3) are both negative and the magnitude of τv(p/3) is larger than that of τd(p/3).
RSHT was well supported by the DNS data of Chen et al. (1997a) for δu2.

Although only four terms of ε were measured with the present one-component
vorticity probe, it was assumed that an approximation to ε could be obtained via the
following expression:

ε = ν[6u2
1,1 + 3u2

1,2 + 2u2
2,1 + 2u1,2u2,1]. (5.4)

The corresponding spectrum is given by

φε(k1) = ν[6φu1,1
(k1) + 3φu1,2

(k1) + 2φu2,1
(k1) + 2Co1221(k1)], (5.5)

where Co1221 is the cospectrum between u1,2 and u2,1 and is defined such that
∫ ∞

0
Co1221

dk1 = 〈u1,2u2,1〉. The spectrum φε(k1) is compared in figure 13 with that obtained by
Antonia et al. (1998) using the three-component vorticity probe (denoted as φεf ;
each term in the expression for φεf is corrected for the effect of spatial resolution;

εf indicates the full dissipation rate). The integrals
∫ ∞

0
φεf (k1) dk1 and

∫ ∞
0
φε(k1) dk1,

which should be equal to 1, agree within 5%. More importantly, the agreement
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ζT (p). The inset shows the Rλ dependence of the difference ζL(8)− ζT (8).

between φεf (k1) and φε(k1) is quite good in the region 0.02 6 k∗1 6 0.1, the region
most relevant to scaling exponent estimations. These observations provide some
justification for the use of (5.4). The exponents τd(p/3) and τv(p/3) were estimated

from distributions of 〈εp/3r 〉 and 〈(ω2
3)
p/3
r 〉 over the scaling range. The resulting values

of ζT (p) and ζL(p) are shown in figure 14. The values of ζL(p) and ζT (p) from the
DNS data of Chen et al. (1997a), are also shown. There is good agreement for ζL(p)
and ζT (p) between the present and the DNS data. For the present data, the different
magnitudes of the inequalities ζT (p) < ζL(p) and ζu2

(p) < ζu1
(p) are not consistent

with RSHT. It is nonetheless evident that RSHT only partially accounts for the
present inequality ζu1

(p) < ζu2
(p). It is found that for p 6 3, ζL(p) ' ζT (p), with

practically no variation with Rλ. For p > 4, ζL(p) and ζT (p) decrease with Rλ but
the magnitude [ζL(p) − ζT (p)] is essentially constant (as shown in the inset of figure
14). The present data corroborate Chen et al.’s (1997b) observations that enstrophy
is more intermittent than the energy dissipation rate. The Rλ dependence of the
quantities 〈(ω2

3)
2

r 〉/〈(ω2
3)r〉2 and 〈ε2

r 〉/〈εr〉2 is shown in figure 15 for r∗ = λ∗. The former
value is always larger than the latter, indicating that ω2

r is more intermittent than εr .
A more likely source for the inequality ζu1

(p) < ζu2
(p) is the anisotropy in the scaling

range, as discussed in the previous section in the context of 〈(δu1)
3〉 and 〈(δu1)

2〉. As
Rλ increases, the ESS estimation of ζu1

(p) is nearly constant whereas ζu2
(p) increases

due to the improved isotropy in the scaling range. The difference between ζu1
(p)

and ζu2
(p) is consequently reduced. This asymptotic trend seems to corroborate the

argument by He et al. (1998) that the difference between longitudinal and transverse
scaling exponents may disappear in the limit of infinite Rλ. We recall here that when
isotropy is satisfied in the IR, (3.1) predicts the same power-law scaling for φu2

(k1)
and φu1

(k1); for this ‘asymptotic’ case, ζu1
(2) and ζu2

(2) should be identical.
The values of ∆ζ(p) [≡ ζu1

(p) − ζu2
(p)] are plotted against Rλ in figure 16. Also

included are the homogeneous isotropic turbulence DNS data of Chen et al. (1997a)
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Figure 16. Rλ dependence of the present ∆ζ(p) and comparison with DNS data of Chen et al.
(1997a) (∗, Rλ = 216, p = 4− 8), Boratav & Pelz (1997) (+, Rλ = 82, p = 4− 8) and Grossmann et
al. (1997) (•, Rλ = 110, p = 4− 8). The solid lines represent least-squares linear regressions to the
present data for different orders.

(Rλ = 216) and Boratav & Pelz (1997) (Rλ = 82) and Grossmann et al. (1997) (Rλ =
110). Least-squares linear regressions to the present data suggest, after extrapolation
to zero, that ∆ζ(p) should disappear at a sufficiently high value, R∗λ say, of Rλ.
The magnitude of R∗λ increases with p. For p = 8, R∗λ = 280 while for p = 2,
R∗λ = 230. The values of ∆ζ(p) (for p > 4) estimated from the data of Chen et
al. (1997a) seem consistent with these linear regressions. By contrast, ∆ζ(p) (for
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p > 4) inferred from ESS values of ζu1
(p) and ζu2

(p) reported by Boratav & Pelz and
Grossmann et al. are significantly smaller than the present values, possibly because
of the improved level of isotropy achieved in their simulations. For example, Boratav
& Pelz used an unforced flow with a high symmetry initial condition; C3 is about
0.8 even though Rλ is only 82. The values of ∆ζ(p) inferred from the DNS data of
Grossmann et al. for forced stationary turbulence (Rλ = 110), agree quite well with
those of Boratav & Pelz (1997), also reflecting the good isotropy (deviations between
〈u2

1〉, 〈u2
2〉 and 〈u2

3〉 are less than 5%) in their simulation. It needs to be stressed
that there is no real basis for a linear extrapolation in figure 16; an asymptotic
approach towards R∗λ is quite likely, in which case our values of R∗λ should be grossly
underestimated. Speculatively, even higher values of Rλ may be needed if a mean
shear is present. The Rλ independence of ζu1

mentioned previously is to a significant
extent an artefact of ESS. Since 〈(δu1)

n〉 is cross-plotted against 〈|δu1|3〉, it is worth
keeping in mind that ESS only yields estimates of exponents relative to 〈|δu1|3〉.
When (4.6) is used, ζu1

(2), like ζu2
(2), increases with Rλ, although the difference

[ζu1
(2)− ζu2

(2)] decreases with Rλ as reported in figure 16. The variation of ζu1
(2) and

ζu2
(2) with Rλ suggests that the effect of Rλ is not just confined to the magnitude of

the structure functions, as shown in figures 7 and 9. It also affects the scaling of these
quantities.

The intermittency parameter µ plays an important role in the theoretical framework
of turbulence. Previous estimates of µ were in the range 0.2 to 0.7 (e.g. Van Atta &
Yeh 1975; Nelkin 1981; Antonia, Phan-Thien & Satyaprakash 1981; Anselmet et al.
1984; Meneveau & Sreenivasan 1991; Praskovsky & Oncley 1994a, b; Shafi, Zhu &
Antonia 1996). Sreenivasan & Kailasnath (1993) noted that this scatter is most likely
due to the different definitions of µ used in various experiments. One estimate of µ is
provided by the autocorrelation of ε (e.g. Novikov 1971; Monin & Yaglom 1975)

ρ(ε) =
〈ε(x+ r)ε(x)〉

〈ε〉2 ∼ r−µ, (5.6)

when r is in the IR. With a few exceptions, the majority of the experimental estimations
of ε to date have been based on the tenuous assumption that εiso ≡ 15νu2

1,1. However,
the adequacy of εiso as a suitable surrogate for ε has been questioned (e.g. Gibson
& Masiello 1972; Hosokawa, Oide & Yamamoto 1996; Antonia et al. 1998). In the
present work, several possible surrogates for ε have been used in conjunction with
(5.6). The values of µ estimated over the same scaling range as for the structure
functions are shown in figure 17. All choices of ε yield approximately the same value
of µ (' 0.1 ± 0.03), which is much smaller than the generally accepted value of
0.2 (e.g. Sreenivasan & Kailasnath 1993; Praskovsky & Oncley 1994a, b) at higher
Reynolds numbers, also using (5.6). This discrepancy may reflect the small present
values of Rλ. Note that the value of µ inferred from εf , also shown in figure 17, agrees
well with that obtained from 〈ε〉iso .

Mydlarsky & Warhaft (1996) used 15νu2
1,1 and 7.5νu2

2,1 to estimate the value of µ
from (5.6). They found that µ = 0 for Rλ < 100, while for Rλ > 100, µ increases with Rλ.
At Rλ = 731, µ ' 0.14. The scaling ranges defined in figure 3 of Mydlarski & Warhaft
(1996) are not the same as those indicated by the third-order longitudinal velocity
structure functions shown in figure 19 of their paper. If the scaling ranges in the latter
figure were used, the values of µ based on ε = 15νu2

1,1 would increase to 0.1 (Rλ = 99)
and 0.15 (Rλ = 377). For their simulation (Rλ = 110), Vincent & Meneguzzi (1991),
also using (5.6), obtained values of µ comparable to ours. Referring to Kraichnan
(1974), they argued that µ, as it appears in (5.6), is not a pure IR quantity even
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Figure 17. Estimates of µ using different expressions for ε and compared with those obtained
from ζu1

(6). 4, ε ∼ 〈u2
1,1〉; ∗, ε ∼ 〈ω2

3〉; �, ε ∼ equation (5.4); •, εf (from the three-component
vorticity probe of Antonia et al. 1998); �, from the sixth-order velocity structure function, i.e.
〈(δu1)6〉 ∼ rζu1 (6) (ζu1

(6) = 2− µ).

when r is in the IR. µ should therefore contain some influence from the DR scales,
especially when Rλ is small (see also Sreenivasan & Antonia 1997; Grossmann et al.
1997). As Rλ increases, the influence from the DR should diminish and µ, obtained
from (5.6), should increase approaching the value of about 0.2 at sufficiently large
Rλ. Measurements in high-Rλ flows show that µ obtained from (5.6) is approximately
constant (' 0.2–0.25) (e.g. Chambers & Antonia 1984; Sreenivasan & Kailasnath
1993; Praskovsky & Oncley 1994a, b). However, the intermittency exponent µ in (5.6)
is ill-defined, as noted by Praskovsky & Oncley (1994b) and L’vov & Procaccia (1995).
These authors argued that no power-law behaviour in the IR can be expected from
this definition at finite values of Rλ. So (5.6) can only be considered as reasonably
approximate within the IR.

The sixth-order velocity structure function provides another measure of µ since
〈(δu1)

6〉 ∼ r2−µ (i.e. µ = 2 − ζu1
(6)) in the IR. The average value of µ estimated in

this manner is about 0.17 ± 0.05. This value is nearly independent of Rλ if ζu1
(6) is

estimated using ESS and is closer to the ‘consensus’ value of 0.2 (e.g. Antonia et al.
1982; Anselmet et al. 1984; Sreenivasan & Kailasnath 1993).

6. Rλ dependence of the fourth-order velocity derivative correlations
Distributions of the ratios A (≡ I2/I1), B (≡ I3/I1) and C (≡ I4/I1) are shown

in figure 18. Also shown in this figure are values of A, B and C inferred from
isotropic DNS data (Siggia 1981, Rλ = 60–90; Kerr 1985, Rλ = 9–83) and the grid
turbulence data of Tsinober et al. (1992). Values of A and C from the three-component
vorticity probe are also shown (I3 was not available in this latter experiment). There
is satisfactory agreement between values of A (figure 18a) obtained from different
methods, except for the values of Siggia which are about 30% higher than the
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Figure 18. Rλ dependence of invariants defined by Siggia (1981). (a) A (≈ I2/I1); (b) B (≈ I3/I1); (c)
C (≈ I4/I1). �, Present; O, Kerr (1985); �, three-component vorticity measurement; 4, Tsinober
et al. (1992); —, Siggia (1981). Error bars indicate experimental uncertainties for the present data.

others. The data of Kerr (1985) suggest that A increases weakly with Rλ (∼ R0.11
λ )

whereas the present values and those of Tsinober et al. show no discernible Rλ
dependence, indicating that the present measured values of I2 reveal the same power-
law dependence on Rλ as I1. There is a large scatter in B (figure 18b): the present
data have much larger magnitudes than those of Siggia, Kerr and Tsinober et al.
Unlike the present and Tsinober et al.’s (1992) values of C (figure 18c) which show
practically no Rλ dependence, Kerr’s data indicate a R0.19

λ dependence. The value of
C from the three-component vorticity probe is 30% smaller than for the present
measurement. This may be due to the poor spatial resolution of the probe at this
location (∆x∗2 ' ∆x∗3 ' 6). This probe was also used in a turbulent far wake (Rλ = 40),
with ∆x∗2 ' ∆x∗3 = 3.5; the resulting value of C was about 5.2.

The four rotational invariants defined in (1.1) can also be normalized as follows
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Figure 19. Power-law dependence of G1 on Rλ (∼ Rαλ ) and comparison with other data. �, Present
(α = 0.17 ± 0.03); O, Kerr (1985) (0.18 ± 0.02); +, Kuo & Corrsin (1971) (0.2 ± 0.05); ◦, Jimenez
et al. (1993) (0.25 ± 0.02); ∗, Gotoh & Rogallo (1994) (0.21 ± 0.04); �, three-component vorticity
probe. Error bars indicate experimental uncertainties for the present data.

(Kerr 1985):

G1 =
15

7

I1

〈e2〉2 , G2 = 3
I2

〈ω2〉〈e2〉 , G3 = 3
I3

〈ω2〉〈e2〉 , G4 =
9

5

I4

〈ω2〉2 . (6.1)

The corresponding Gaussian values for Gi are 3 (i = 1), 3 (i = 2), 1 (i = 3) and 3
(i = 4). G1 and G4 can be identified with the flatness factors of u1,1 and ωi (i = 1, 2, 3)
respectively if isotropy is assumed. The implication of Kolmogorov (1941) is that the
limiting values of the flatness factors of velocity derivatives should be independent of
the large-scale properties of the turbulence and should reach universal constant values
at large enough Rλ. The Rλ dependences of Gi (i = 1–4) are shown in figures 19–21.
All the values of G1 or Fu1,1

shown in figure 19 are larger than the Gaussian value
of 3. There is good agreement between the experimental values of Kuo & Corrsin
(1971) and the numerical values of Kerr (1985) and Jimenez et al. (1993). The DNS
values of Gotoh & Rogallo (1994) are quite small. Kuo & Corrsin (1971) found that
the flatness factor Fu1,1

∼ R0.2
λ for Rλ < 200, and, following a transition zone up to

Rλ ' 500, Fu1,1
increases more rapidly with Rλ. The present values of G1 agree well

with those obtained from the three-component vorticity probe. A power-law fit to the
present data in figure 19 yielded an exponent of 0.17 ± 0.03, which is close to the
value obtained by Kuo & Corrsin (1971) and Kerr (1985) (0.18± 0.03).

The present distributions of G2 and G3 are compared with those of Kerr (1985)
and Tsinober et al. in figure 20. For values of G2 (figure 20a), which are larger
than the Gaussian value of 3 except for Kerr’s simulation at small Rλ, there is good
agreement between the present and Tsinober et al.’s data. These values are typically
about 10% smaller than Kerr’s values at a comparable Rλ. Kerr’s data for G2 indicate
a Rλ dependence with an exponent α of 0.29 (±0.03), which is comparable to the
present value of 0.22 (±0.05). Unlike Kerr’s and Tsinober et al.’s values of G3, which
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Figure 20. Power-law dependence of G2 and G3 on Rλ (∼ Rαλ ) and comparison with other data.
(a) G2: �, Present (α = 0.22 ± 0.05); O, Kerr (1985) (α = 0.29 ± 0.03); 4, Tsinober et al.
(1992); �, three-component vorticity probe. (b) G3: �, Present (α = 0.66 ± 0.09); O, Kerr (1985)
(α = 0.16 ± 0.04); 4, Tsinober et al. (1992). Error bars indicate experimental uncertainties for the
present data.
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Figure 21. Power-law dependence of G4 on Rλ (∼ Rαλ ) and comparison with other data. �, Present
(α = 0.24±0.02); O, Kerr (1985) (0.37±0.05); ∗, Gotoh & Rogallo (1994) (0.42 ± 0.03);4, Tsinober
et al. (1992); �, three-component vorticity probe. Error bars indicate experimental uncertainties for
the present data.
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are smaller than the Gaussian value (≡ 1), the present values of G3 (figure 20b) are
significantly larger than 1. Kerr and Tsinober et al. argued that the small values of
G3 imply some alignment in the small-scale turbulent structures. All the values of
G3 increase monotonically with Rλ for Rλ > 20; the present power-law exponent for
G3 (0.66± 0.09) is about four times larger than that of Kerr (0.16± 0.04). The large
difference for G3 between Kerr, Tsinober et al. and the present measurement needs
to be resolved, although it may simply reflect the large experimental uncertainty in
estimating G3.

Figure 21 compares the present values of G4 with those of Tsinober et al., Kerr
(1985) and Gotoh & Rogallo (1994). The Tsinober et al. data agree well with the
present data for x1/M > 37. The values of G4 from the three-component vorticity
measurement are about 10% smaller than the present values. From power-law fits
in the range Rλ > 30, we find exponents of 0.24 ± 0.05, 0.37 ± 0.03 and 0.42 ± 0.03
for our data, Kerr and Gotoh & Rogallo respectively. Compared with figure 19, the
exponents in figure 21 for G4 are higher. As suggested by Kerr (1985), different power-
law exponents may be needed for the rate of strain and the vorticity. The Gotoh &
Rogallo data seem to support this suggestion more clearly. The present data, on the
other hand, indicate that the exponent for G4 (= 0.24±0.05) is only marginally bigger
than that for G1 (= 0.17± 0.03); this difference may not be significant in view of the
experimental uncertainty.

7. Conclusions
The transverse component ω3 of the fluctuating vorticity vector was measured in

grid turbulence for values of the Taylor microscale Reynolds number Rλ in the range
27–100. Local isotropy of the small-scale structures was examined extensively. In
particular, the measured spectra of u2 and ω3 were compared with those calculated
using isotropic relations. The wavenumber range over which local isotropy is satisfied
by φ∗u2

(k∗1) extends to lower values of k∗1 as Rλ increases. By contrast, φ∗ω3
(k∗1) shows

quite good agreement (±10%) with isotropy at nearly all wavenumbers, supporting
the conclusion by Antonia & Kim (1994) that the vorticity spectra tend to satisfy
isotropy almost independently of Rλ.

The inequality between scaling exponents, estimated with a modified ESS method,
for the longitudinal and transverse velocity increments can only partially be attributed
to a difference in intermittency between the locally averaged energy dissipation rate
and the enstrophy. The difference [ζL(p) − ζT (p)] inferred, using RSH and RSHT,

from the scaling range behaviours of 〈εp/3r 〉 and 〈(ω2
3)
p/3
r 〉 is much smaller than the

difference [ζu1
(p) − ζu2

(p)], which was directly obtained from the longitudinal and
transverse velocity increments. Although the former difference agrees quite well with
the difference [ζu1

(p) − ζ⊥(p)], where ζ⊥(p) is obtained by plotting 〈|δu2|p〉 against
〈|δu2|3〉, this agreement may be fortuitous since there is no theoretical basis for
〈|δu2|3〉. A more likely source of the inequality ζu2

(p) < ζu1
(p) is the scaling-range

anisotropy associated with the present small values of Rλ. The second- and third-order
moments of δu1 (§ 4) clearly indicate that the anisotropy decreases with increasing Rλ.
It would therefore be reasonable to expect the difference [ζu1

(p)− ζu2
(p)] to decrease

as Rλ increases. The present Rλ dependence of [ζu1
(p)− ζu2

(p)] strongly supports this
expectation. In particular, the inequality ζu2

(2) < ζu1
(2) should disappear when Rλ '

1000. Speculatively, a value of Rλ of order 104 may be needed if a mean shear is present.
The four invariants Iα (α = 1 to 4) proposed by Siggia (1981) were determined from

the data obtained with the transverse vorticity probe. For any particular value of α, the
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magnitude of Iα/I1 is, to a first approximation, nearly constant over the present range
of Rλ, implying that all the Iα are interdependent. Consequently, all fourth-order veloc-
ity derivative correlations should be proportional to 〈u4

1,1〉 in isotropic turbulence. This
appears to be approximately satisfied by the present data. Correspondingly, different
fourth-order velocity derivative correlations increase with Rλ at approximately the
same rate allowing for the experimental uncertainty. This contrasts with the sugges-
tions by Kerr (1985) and Gotoh & Rogallo (1994) – based on DNS isotropic turbulence
data over a Rλ range comparable to that of the present experiment – that at least two
power-law exponents are needed, one for the rate of strain and the other for vorticity.
It is however consistent with our earlier conclusion that the statistical differences
between εr and (ω2

3)r only marginally account for the difference of [ζu1
(p)− ζu2

(p)].
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